Molecular structure of some [1.1]ferrocenylruthenocenophanium ${ }^{n+}$ ($n=1,2$) polyiodides salts

Masanobu Watanabe ${ }^{\text {a, * }}$, Izumi Motoyama ${ }^{\text {a }}$, Hirotoshi Sano ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, Fuculty of Engineering, Kanagawa University, Rokkakubashi, Yokohama 221, Japan
${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Minami-ohsawa, Hachioji, Tokyo 192-03, Japan

Received 19 July 1995

Abstract

Oxidation of [1.1]ferrocenylruthenocenophane with a large excess and 1.5 equivalents of iodine gives dicationic iodo[1.1]ferrocenylruthenocenophanium ${ }^{2+} \mathrm{I}_{3}^{-} \cdot 0.5\left(\mathrm{I}_{3}^{-}\right)_{2} \cdot 0.5 \mathrm{I}_{2}$ (1) and monocationic [1.1]ferrocenylruthenocenophanium ${ }^{+} \mathrm{I}_{3}^{-}$(2) salts respectively. The structures of 1 and 2 were analyzed by single-crystal X-ray diffraction studies. The crystal form of $\mathbf{1}$ is monoclinic space group $C 2 / c$, $a=21.351(5), b=20.594(5), c=17.397(4) \AA, \beta=124.17(1)^{\circ}, Z=8$, and the final $R=0.068$ and $R_{\mathrm{w}}=0.070$. The cation formulated as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{2+}$ exists in a syn-conformation as in the cases of the neutral compound. The distance between the $\mathrm{Ru}^{\mathrm{IV}}$ and $\mathrm{Fe}^{\mathrm{II}}$ is $4.656(4) \AA$, which is much shorter than the value of the neutral compound (4.792(2) \AA), and the bond angle of $\mathrm{I}-\mathrm{Ru}^{\mathrm{IV}} \cdots \mathrm{Fe}^{\mathrm{III}}$ is 81.26°. The dihedral angle between the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ (fulvenide) rings on the $\mathrm{Ku}^{I V}$ moiety is 37.56° due to the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}$ bond (2.758(3) \AA). These two rings of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Ru}^{\mathrm{IV}}$ moieties are essentially eclipsed. The unit cell has three kinds of $\mathrm{I}_{3}^{-}\left(\mathrm{I}_{3 \mathrm{a}}^{-}, \mathrm{I}_{3 \mathrm{~b}}^{-}\right.$ and $\mathrm{I}_{3 \mathrm{c}}^{-}$) and one I_{2}, and the formula of $\mathbf{1}$ is given as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV} \mathrm{I}}\right]^{2+} \mathrm{I}_{3}^{-} \cdot 0.5\left(\mathrm{I}_{3}^{-}\right)_{2} \cdot 0.5 \mathrm{I} 2$. The crystal of 2 formulated as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{II}}\right]^{+} \mathrm{I}_{3}^{-}$is triclinic space group $P \overline{1}, a=13.487(6), b=15.404(7), c=11.458(4) \AA, \alpha=95.59(3)^{\circ}, \beta=$ $101.00(3)^{\circ} \gamma=79.38(3)^{\circ}, Z=2$, and the final $R=0.067$ and $R_{w}=0.068$. The unit cell has two independent molecules (unit A and B); i.e. two kinds of distance between the $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ are observed; one (A) is $4.615(3)$ and the other (B) is $4.647(3) \AA$. The two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings of both $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Ru}^{\mathrm{II}}$ are essentially staggered and the dihedral angles between the rings of FcH and RcH moieties are less than 5.8°. Typical ferrocenium-type broad singlet ${ }^{57} \mathrm{Fe}$-Mössbauer lines are observed for both salts $(1,2)$ at all temperatures.

Keywords: Iron; Ruthenium; Metallocenes; Ferrocene

1. Introduction

[1.1]ferrocenylruthenocenophane is an interesting molecule because ferrocene (FcH) and ruthenocene (RcH) are bridged by a $-\mathrm{CH}_{2}$ - group in syn-conformation. Therefore some intramolecular interaction between Fe and Ru atoms will be expected. Recently we reported an X-ray analysis study on the oxidation product (3) of [1.1]ferrocenylruthenocenophane with iodoruthenocenium ${ }^{+} \mathrm{BF}_{4}^{-}\left([\mathrm{RcHI}]^{+} \mathrm{BF}_{4}^{-}\right)$. On the basis of the results of the X -ray analysis of $\mathbf{3}$, the cation is formulated as $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{RuI}\right]^{+}$and the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings in the RcH moiety are largely slanted (the dihedral angle between the rings is 33.87°) due to the Ru-I bond (2.751 (1) \AA) [1], as shown in Fig. 1. One of the interesting structural features of the salt is a

[^0]twisted $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand: i.e. one has a large twisted angle (42.02°) and the other has a small one (11.19 ${ }^{\circ}$), probably because of electrostatic interaction between the BF_{4}^{-}and the cation $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}-\right.$ RuI] (from the unit cell projection, the cation is directed to the BF_{4}^{-}). The distance between the Ru and Fe is $4.719(1) \AA$, which is shorter than the corresponding value of the neutral compound ($4.792(2) \AA$) [2]. All the results indicate clearly that the oxidation states of the Fe and Ru atoms in the cation are $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Ru}^{\mathrm{IV}}$ respectively, and the cation is formulated as [$\mathrm{Fe}^{11}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{-}\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+}$. The result is contrary to cyclic voltammogram results on [1.1]ferrocenylruthenocenophane; i.e. the study shows two independent peaks: a quasi-reversible one-electron oxidation peak ascribed to $\mathrm{Fe}^{\mathrm{HI}} \rightarrow \mathrm{Fe}^{\mathrm{II}}$ at 400 mV , and an irreversible two-electron oxidation peak to $\mathrm{Ru}^{\text {II }} \rightarrow \mathrm{Ru}^{\mathrm{IV}}$ at 940 mV [3] (i.e. the Fe atom is oxidized easily). In the present study, oxidation of [1.1]ferrocenylruthenocenophane with iodine was carried out; i.e. oxidation with a large excess of iodine

Fig. 1. ORTEP drawing of cation 3.
gave a dicationic salt 1 and with 1.5 equivalent amount of iodine gave a monocationic salt 2 . The aim of the present study is to investigate the crystal structures of $\mathbf{1}$ and $\mathbf{2}$ in comparison with those of the original compound and 3 and to discuss the different oxidation mechanism of [1.1]ferrocenylruthenocenophane with I_{2} and with $[\mathrm{RcHI}]^{+}$.

2. Experimental

2.1. Syntheses

Salt 1 was prepared as follows: [1.1]Ferrocenylruthenocenophane ($100 \mathrm{mg}, 0.227 \mathrm{mmol}$; prepared by
reduction of [1.1]ferrocenylruthenocenophane-1,13-dione with LiAlH_{4} and AlCl_{3} according to the method reported previously [4]) dissolved in $50 \mathrm{~cm}^{3}$ of benzene was added to a large excess of iodine ($500 \mathrm{mg}, 1.97$ mmol) dissolved in $100 \mathrm{~cm}^{3}$ of benzene. The mixture was stirred for 10 min . Black precipitates were formed. Salt 1 was obtained by recrystallization from a $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ mixture as black crystals (280 mg ; yield 85%). Single crystals were obtained by the following method. Salt $\mathbf{1}$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. To this solution, ether was carefully diffused for a few days. The single crystals were formed on the side of the container at room temperature. Anal. Found: C, 18.45; $\mathrm{H}, 1.30 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeI}_{8} \mathrm{Ru}$. Calc.: $\mathrm{C}, 18.14 ; \mathrm{H}, 1.38 \%$. Salt and single crystals of 2 were prepared by a similar method as for 1 , using 1.5 equivalent of I_{2} ($[1.1]$ ferrocenylruthenocenophane; $100 \mathrm{mg}, 0.227 \mathrm{mmol}$ and \mathbf{I}_{2}; $86.5 \mathrm{mg}, 0.341 \mathrm{mmol}$). Anal. Found: C, 31.98; H, 2.35. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeI}_{3} \mathrm{Ru}$. Calc.: C, 32.15 ; H, 2.45%.

2.2. Measurements

[^1]Table 1
Crystal and intensity collection data for $\mathbf{1 , 2}$

	Compound				
	1	2			
Formula Formula weight	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Fel}_{8} \mathrm{Ru} \\ & 1456.55 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{44} \mathrm{H}_{40} \mathrm{Fe}_{2} \mathrm{I}_{6} \mathrm{Ru}_{2} \\ & 1644.06 \end{aligned}$			
Space group	C2/c	$P \overline{1}$			
$a(\AA)$	21.351(5)	13.487(6)			
$b(\AA)$	20.594(5)	15.404(7)			
$c(\AA)$	17.397(4)	11.458(4)			
$\alpha\left({ }^{\circ}\right)$	90.0	95.59(3)			
$\beta\left({ }^{\circ}\right)$	124.17(1)	101.00(3)			
$\gamma\left({ }^{\circ}\right.$)	90.0	79.38(3)			
$V\left(\AA^{3}\right)$	6329(2)	2291(1)			
Z	8	2			
$D x\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	3.06	2.38			
$T\left({ }^{\circ} \mathrm{C}\right)$	23	23			
$\lambda(\AA)$	0.71073	0.71073			
$\mu\left(\mathrm{cm}^{-1}\right)$	87.54	106.8			
No. of reflections measured	7662	10375			
No. of observed reflections	$3290(l>2 \sigma(l))$	$5253(I>2 \sigma(I))$			
$R^{\text {a }}$	0.068	0.067			
$R_{\text {w }}{ }^{\text {b }}$	0.070	0.068			
$\begin{aligned} & \mathrm{a} R=\Sigma \\| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma \mid \\ & { }^{\mathrm{b}}{ }_{\mathrm{w}}=\left(\Sigma \omega \left(\left\\|F_{\mathrm{o}}\|-\| F_{\mathrm{c}}\right\\|\right.\right. \end{aligned}$					

NMR measurements were carried out by the same method reported previously [1].

2.3. X-ray crystallography

Crystals $\left(0.1 \times 0.1 \times 0.3 \mathrm{~mm}^{3}\right)$ of $1,(0.1 \times 0.4 \times 0.2$ mm^{3}) of 2 were selected. X-ray diffraction experiments were carried out on a Rigaku AFC-6A automated fourcircle X-ray diffractometer with graphite monochromatized Mo-K α radiation ($\lambda=0.71073 \AA$). The intensity data were collected at $25 \pm 1^{\circ}$ using the $2 \theta-\omega$ scan mode with a scanning speed of $4^{\circ} \mathrm{min}^{-1}$. The lattice parameters were determined by a least-squares calculation with 25 reflections. Crystal stability was checked by recording three standard reflections every 150 reflections, and no significant variations were observed. For 1,7662 reflections were collected in the range $2 \theta \leq 55^{\circ}$, 7465 were unique ($R_{\text {int }}=0.04$), of which 3042 reflections with $I_{\text {obsd }}>2 \sigma\left(I_{\text {obsd }}\right)$ were used for the structure
determination. The scan width was $1.21+0.3 \tan \theta$. The refinement 291 variable parameters converged to $R=\sum\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \sum\right| F_{\mathrm{o}}\right|=0.067, \quad R_{\mathrm{w}}=\right.$ $\left[\sum \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum \omega F_{\mathrm{o}}^{2}\right]^{1 / 2}=0.061$. For 2, 10375 reflections were collected in the range $2 \theta \leq 55^{\circ}, 9950$ were unique ($R_{\text {int }}=0.027$), of which 5253 reflections with $I_{\text {obsd }}>2 \sigma\left(I_{\text {obsd }}\right)$ were used for the structure determination. The scan width was $1.42+0.3 \tan \theta$. The refinement 457 variable parameters converged to $R=0.068, R_{\mathrm{w}}=0.066$.

The non-hydrogen atoms were refined anisotropically by full matrix least squares. Hydrogen atoms were fixed at the calculated positions. Neutral atom scattering factors were taken from Cromer and Waber [5] and anomalous dispersion effect corrections were included in F_{c}. The values of Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley [6]. All of the calculations were performed using the TEXSAN crystallographic software package [7]. Crystallographic data for 1 and 2 and some of the

Table 2
Selected bond lengths and angles of 1,2 and related compounds

	1	2		3	[1.1]Ferrocenoruthenocenophane
		A	B		
$\mathrm{Fc}-\mathrm{Ru}$	$4.656(4)$	4.615 (3)	$4.647(3)$	4.719 (1)	4.792(2)
$\mathrm{Fe}-\mathrm{Cp}{ }^{\text {a }}$	$1.706(6)$	1.684(10)	$1.711(5)$	$1.654(2)$	$1.665(7)$
$\mathrm{Ru}-\mathrm{Cp}{ }^{\text {b }}$	$1.824(2)$	$1.794(2)$	1.803(5)	1.861(8)	$1.788(5)$
$\mathrm{Fe}-\mathrm{C}_{\text {ring }}$ (av)	2.08(4)	2.07(4)	$2.09(4)$	2.047(6)	$2.055(6)$
$\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ (av)	2.21 (4)	2.15 (2)	2.16 (3)	2.22(3)	$2.151(6)$
$\mathrm{Ru}-\mathrm{I}$	2.758 (3)			2.751(1)	
$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}(\mathrm{Fe})$	1.41(3)	1.40(6)	1.41(4)	1.42(1)	
$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}(\mathrm{Ru})$	1.39(3)	1.37(9)	1.42(5)	1.42(3)	
Bond angles (${ }^{\circ}$)					
$\mathrm{I}-\mathrm{Ru} \cdots \cdot \mathrm{Fe}$	81.26			91.50	
$\mathrm{C}(1)-\mathrm{C}(21)-\mathrm{C}(11)$	124.2(9)	130.5(8)	121.5(6)	121.0(5)	120.4(5)
$\mathrm{C}(6)-\mathrm{C}(22)-\mathrm{C}(16)$	113.6(8)	114.2(9)	117.8(5)	119.0(5)	120.7(5)

Dihedral angles between planes $\left(^{\circ}\right.$) for 1

	Plane		
$\mathrm{C}(6)-\mathrm{C}(10)$	$\mathrm{C}(11)-\mathrm{C}(15)$	$\mathrm{C}(16)-\mathrm{C}(20)$	
$\mathrm{C}(1 \sim 5)$	5.54	17.24	20.43
$\mathrm{C}(6 \sim 10)$	-	-	25.87
$\mathrm{C}(1 \sim 15)$	-	-	37.56

Dihedral angles between planes $\left(^{\circ}\right.$) for 2

Plane (unit A)	Plane		
	C(6)-C(10)	C(11)-C(15)	C(16)-C(20)
C(1)-C(5)	5.64	30.38	30.10
C(6)-C(10)	-	32.26	32.55
C(11)-C(15)	-	-	3.19
Plane (unit B)	Plane		
	C(28)-C(32)	C(33)-C(37)	$\mathrm{C}(38)-\mathrm{C}(42)$
C(23)-C(27)	5.77	30.11	31.98
$\mathrm{C}(28)-\mathrm{C}(32)$	-	30.02	32.09
C(33)-C(37)	-	-	2.23

[^2]experimental conditions for the X-ray structure analysis are listed in Table 1.

3. Results and discussion

3.1. Salt 1

The final atomic coordinates and equivalent isotropic temperature factors (B_{eq}) of non-hydrogen atoms, interatomic distances, and selected bond lengths and angles for 1 are shown in Tables 2, 3 and 4. ORTEP drawings of the cation with the atomic numbering system are shown in Fig. 2. The conformation of the cation is similar to that of reported cation 3 formulation as $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+}$; i.e. the cation exits in a syn-conformation and the iodine atom is coordinated to the Ru from the opposite side of the methylene group. The $\mathrm{Ru}-\mathrm{I}$ distance (2.758 (3) \AA) corresponds well with the reported $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}$ value $(2.751(1) \AA$) of 3 [1]. The distances from $\mathrm{I}(1)$ to $\mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(17)$ and $\mathrm{C}(18)$ are found to be $3.16(2), 3.29(3), 3.18(3)$ and
$3.30(3) \AA$ respectively. These values are much smaller than the sum ($3.85 \AA$) of van der Waals radii of C and I atoms [8], therefore a large dihedral angle (37.56°) between the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings is found in the RcH moiety, which is larger than the corresponding values for $3\left(33.87^{\circ}\right)$ and $[\mathrm{RcHI}]^{+} \mathrm{I}_{3}^{-}\left(32.2^{\circ}\right)$ [1,9]. The interplane $\mathrm{C}(15) \cdots \mathrm{C}(20), \quad \mathrm{C}(14) \cdots \mathrm{C}(19), \mathrm{C}(13) \cdots$ $C(18), C(12) \cdots C(17)$ and $C(11) \cdots C(16)$ distances are found to be $2.93(3), 3.13(3), 3.95(3), 4.26(3)$ and $3.62(3) \AA$ respectively. The largest $C(12) \cdots C(17)$ distance is longer than the corresponding value of $[\mathrm{RcHI}]^{+} \mathrm{I}_{3}^{-}(4.11(3) \AA$) [9]) because of a larger dihedral angle between the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ planes of 1 . However, the rings of the FcH moiety are nearly parallel (the dihedral angle between the planes is 5.54°). The average interplane $C_{\text {ring }} \cdots C_{\text {ring }}$ distance of the FcH moiety is found to be $3.41(9) \AA$. The $\mathrm{Fe}(1) \cdots \mathrm{Ru}(1)$ distance is found to be $4.656(4) \AA$ (which is slightly shorter than the value for $3(4.719(1) \AA)$).

As shown in Fig. 2, the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings of each FcH and RcH moiety are essentially eclipsed as in the case

Table 3
Atomic coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors $\left(\AA^{2}\right)$ for $\mathbf{1}$

Atom	x	y	z	$B_{\text {eq }}{ }^{\text {a }}\left(\AA^{2}\right)$
I(1)	1530.6(12)	2377.1(9)	5432.3(15)	5.0
I(2)	4382.7(11)	51.2(9)	6016.8(13)	4.3
1(3)	3575.8(11)	688.1(8)	4274.5(14)	4.0
I(4)	2632.3(18)	1264.3(11)	2341.8(16)	8.2
I(5) ${ }^{\text {b }}$	0	3234.2(15)	2500	7.2
I(6) ${ }^{\text {b }}$	0	1857.1(14)	2500	5.0
$\mathrm{I}(7)^{\text {b }}$	0	404.8(15)	2500	6.1
I(8)	1055.8(11)	1375.9(11)	-474.6(14)	4.8
I(9) ${ }^{\text {b }}$	0	1444.1(13)	- 2500	3.7
I(10)	4357.8(18)	1526.3(12)	2505.0(17)	8.4
Ru(1)	1670.3(11)	1046.5(10)	5638.3(14)	2.6
$\mathrm{Fe}(1)$	3200.9(19)	1631.5(18)	8758.7(24)	2.8
C(1)	2138(12)	1186(11)	8286(16)	2.5
C(2)	2036(15)	1874(13)	8119(19)	3.8
C(3)	2532(15)	2181(13)	9016(18)	3.5
C(4)	2891(15)	1711(15)	9675(17)	3.8
C(5)	2679(12)	1092(13)	9261(17)	3.0
C(6)	3689(12)	1278(13)	8052(17)	3.1
C(7)	3542(14)	1948(12)	7889 (19)	3.1
C(8)	3930(16)	2264(13)	8744(21)	3.9
C(9)	4342(17)	1831(16)	9457(22)	4.7
$\mathrm{C}(10)$	4202(15)	1202(14)	9065(21)	3.9
C(11)	1289(12)	760 (11)	6574(16)	2.4
C(12)	883(13)	1288(12)	6079(17)	3.1
C(13)	455(12)	1116(18)	5080(17)	4.6
C(14)	633(17)	483(15)	5034(22)	4.4
C(15)	1132(15)	246(13)	5903(19)	3.9
$\mathrm{C}(16)$	2919(12)	794(11)	6438(16)	2.4
C(17)	2776(14)	1322(13)	5868(19)	3.7
C(18)	2211(15)	1160(13)	4884(18)	3.5
C(19)	2036(15)	514(15)	4901(18)	3.9
C(20)	2456(14)	292(11)	5803(18)	2.9
C(21)	1720(15)	658(13)	7593(19)	3.7
$\mathrm{C}(22)$	3477(13)	678(12)	7457(16)	2.8

Fig. 2. ORTEP drawing of $\left[\mathrm{IRu}^{\mathrm{IV}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Fe}^{\mathrm{II}}\right]^{2+}$ cation with the numbering scheme of the atoms.
of RcHI and $[\mathrm{RcHI}]^{+}$cation; i.e. the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings rotate about 2.8° for FcH and 1.0° for RcH moieties (the rotation angle is 0° for the precisely eclipsed and 36.0° for the exactly staggered conformation). The average Cp -ring $\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}$ bond lengths of the FcH and RcH moieties are $1.41(3)$ and $1.39(4) \AA$ respectively. Both
values agree with that of the reported $\mathrm{FcH}(1.403 \pm 0.02$ $\AA[10])$ and $\mathrm{RcH}(1.43(3) \AA$ [11]). However, the mean $\mathrm{Fe}-\mathrm{C}_{\text {ring }}$ distance $(2.08(4) \AA$) is larger than that obtained for $\mathrm{FcH}(2.045 \pm 0.01 \AA)$ and the neutral compound (2.055(6) \AA [2]) and closer to that of ferrocenium $\left(\mathrm{FcH}^{+} ; 2.075 \AA\right.$) [11]. The mean $\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ distance (2.21(4) \AA) is also larger than the corresponding value for the neutral compound ($2.151(6) \AA$) and closer to the values for 3 (2.22(3) \AA) and [RcRcI] ${ }^{+}$cation (2.22(2) \AA) [1,13]. Furthermore, the distances from the Fe and Ru to the least-squares mean planes of the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings ($\mathrm{Fe}-\mathrm{Cp}, \mathrm{Ru}-\mathrm{Cp}$; see (Table 2) are $1.706(6)$ and $1.824(2) \AA$ respectively. Both values are closer to those for $\mathrm{FcH}^{+}(1.70 \AA)$ and $[\mathrm{RcHI}]^{+}(1.84 \AA[9])$ respectively. Therefore oxidation states of Fe and Ru atoms are estimated as $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Ru}^{\mathrm{IV}}$ and the cation is formulated as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+}$in the solid considering the results of elemental analysis data.
${ }^{57} \mathrm{Fe}$-Mössbauer spectroscopic study of 1 supports this conclusion; i.e. a temperature independent typical ferrocenium type broader singlet peak (isomer shifts; $0.52 \mathrm{~mm} \mathrm{~s}^{-1}$ at 78 K and $0.48 \mathrm{~mm} \mathrm{~s}^{-1}$ at 300 K) was observed at all the temperatures. Although several ${ }^{13} \mathrm{C}$ CP/MAS NMR peaks were observed for 3 [1], no clear ${ }^{13}$ C-CP/MAS NMR signals were observed for 1 because of its paramagnetism ($\mathrm{Fe}^{\text {III }}$).

The $C(1)-C(21)-C(11)$ and $C(6)-C(22)-C(16)$ an-

Table 4
Selected interatomic distances for 1

Atom 1	Atom 2	Distance (\AA)	Atom 1	Atom 2	Distance (\AA)
Ru(1)	I(1)	2.758 (3)	$\mathrm{Fe}(1)$	$\mathrm{Ru}(1)$	4.656(4)
$\mathrm{Fe}(1)$	I(1)	5.036(4)	I(2)	I(3)	2.830 (3)
I(3)	I(4)	3.027(3)	I(5)	I(6)	$2.836(4)$
I(6)	I(7)	2.991(4)	I(8)	I(9)	$2.932(2)$
I(10)	I(10)	2.752(7)	$\mathrm{Fe}(1)$	C(1)	2.14(2)
$\mathrm{Fe}(1)$	C(2)	2.14(3)	$\mathrm{Fe}(1)$	C(3)	2.06 (2)
$\mathrm{Fe}(1)$	C(4)	2.05(2)	$\mathrm{Fe}(1)$	C(5)	2.08 (2)
$\mathrm{Fe}(1)$	C(6)	$2.14(2)$	$\mathrm{Fe}(1)$	C(7)	2.12 (2)
$\mathrm{Fe}(1)$	C(8)	$2.04(2)$	$\mathrm{Fe}(1)$	C(9)	2.06 (3)
$\mathrm{Fe}(1)$	C(10)	2.09(3)	$\mathrm{Ru}(1)$	C(11)	2.27(2)
Ru(1)	C(12)	2.26(2)	$\mathrm{Ru}(1)$	C(13)	2.21(2)
$\mathrm{Ru}(1)$	C(14)	2.18(3)	$\mathrm{Ru}(1)$	C(15)	2.20 (3)
$\mathrm{Ru}(1)$	C(16)	2.27(2)	$\mathrm{Ru}(1)$	C(17)	2.24 (2)
$\mathrm{Ru}(1)$	C(18)	2.19(2)	$\mathrm{Ru}(1)$	C(19)	$2.14(2)$
$\mathrm{Ru}(1)$	C(20)	2.18(2)	C(1)	C(2)	1.44(3)
C(1)	C(5)	1.43(3)	C(1)	C(21)	1.49(3)
C(2)	C(3)	1.45(4)	C(3)	C(4)	1.36 (3)
C(4)	C(5)	1.41(4)	C(6)	C(7)	1.41(3)
C(6)	C(10)	1.47(4)	C(6)	C(22)	1.51(4)
C(7)	C(8)	1.39(4)	C(8)	C(9)	1.37 (4)
C(9)	C(10)	1.42(4)	C(11)	C(12)	$1.36(3)$
C(11)	C(15)	1.47(3)	C(11)	C(21)	1.48(3)
C(12)	C(13)	1.48 (3)	C(13)	C(14)	1.37(4)
C(14)	C(15)	$1.36(4)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$	1.39 (3)
C(16)	C(20)	1.43 (3)	C(16)	C(22)	1.50(3)
C(17)	C(18)	1.48(4)	C(18)	C(19)	$1.39(4)$
C(19)	C(20)	1.38 (3)			

Fig. 3. Projection of the unit cell of $\mathbf{1}$.
gles are found to be $124.2(9)$ and $113.6(8)^{\circ}$ respectively, these are closer to the values for the neutral compound (120.4(5) and $120.7(5)^{\circ}$ [2]) and 3 (121.0(5) and $\left.119.0(5)^{\circ}[1]\right)$. One of the differing points of structure of 1 compared with 3 is the twisted structure of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}$ system; i.e. an anomalously large twisted angle (42.02°) is observed for 3 between the planes $C(6 \sim 10)$ and $C(16 \sim 20)\left(11.19^{\circ}\right.$ between the planes $C(1 \sim 5)$ and $C(11 \sim 15))$, as described in the Introduction. For 1, two relatively closer kinds of twisted
angle are observed (12.24° between the planes $C(1 \sim 5$) and $\mathrm{C}(11 \sim 15)$; and 25.87° between the planes $\mathrm{C}(6 \sim$ 10) and $C(16 \sim 20)$).

A stereo view of the packing $(Z=8)$ and the view down the c axis of 1 are shown in Figs. 3 and 4 respectively. The cations are aligned along the a and b axes. The shortest intermolecular $\mathrm{C} \cdots \mathrm{C}$ distance in the cation is $3.30(5) \AA\left(\mathrm{C}(14) \cdots \mathrm{C}(14)^{*}\right)$. This value is smaller than the sum of the van der Waals radii of two C atoms ($3.40 \AA$) [8], hence the cations at near van

Fig. 4. Projection of the unit cell of 1 along the c axis. (a) $\left[\mathrm{IRu}^{\mathrm{IV}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Fe}^{\mathrm{III}}\right]^{2+}$ cation; (b) I_{3}^{-}anion ($\mathrm{I}_{3 \mathrm{a}}^{-}$: $\mathrm{I} 2-\mathrm{I} 3-\mathrm{I} 4$; I_{36}^{-}: I5-I6-17; $\mathrm{I}_{3 \mathrm{c}}:$: $\left.88-\mathrm{I} 9-\mathrm{I} 8^{*} ; \mathrm{I}_{2}: \mathrm{I} 10-\mathrm{I} 10^{*}\right)$.
der Waals contact to each other. The shortest intermolecular $\mathrm{I}(1) \cdots \mathrm{I}(1)$ distance is $5.161(5) \AA$, therefore there is no interaction between them. The $I(1)$ sits towards the Fe atoms, but the shortest intermolecular
distance ($7.90 \AA$) between them shows clearly no interaction. The unit cell has three independent asymmetric I_{3}^{-}anions $\left(\mathrm{I}(2)-\mathrm{I}(3)-\mathrm{I}(4): \mathrm{I}_{3 \mathrm{a}}^{-} ; \mathrm{I}(5)-\mathrm{I}(6)-\mathrm{I}(7): \mathrm{I}_{3 \mathrm{~b}}^{-} ; \mathrm{I}(8)-\right.$ $\mathrm{I}(9)-\mathrm{I}(8)^{*} ; \mathrm{I}_{3 \mathrm{c}}^{-}$) and one kind of $\mathrm{I}_{2}\left(\mathrm{I}(10)-\mathrm{I}(10)^{*}\right)$, as

Table 5
Atomic coordinates ($\times 10^{4}$) and isotropic temperature factors (\AA^{2}) for 2

Atom	x	y	z	$B_{\text {eq }}{ }^{\text {a }}\left(\AA^{\circ}\right.$)
I(1)	-178.5(15)	4294.6(15)	-7141.5(21)	9.3
I(2)	1692.2(12)	3820.0(9)	-5424.6(15)	6.3
I(3)	$3611.5(13)$	3342.7(14)	-3816.5(19)	8.5
I(4)	5864.4(13)	2123.3(11)	-1772.4(15)	6.8
I(5)	$7672.5(13)$	1488.6(9)	-48.8(13)	6.2
I(6)	9492.9(15)	792.9(12)	1675.0(16)	7.4
$\mathrm{Ru}(1)$	6610.0(12)	-4637.8(11)	8829.7(15)	4.5
$\mathrm{Ru}(2)$	3006.4(11)	-43.5(9)	5792.2(13)	3.5
$\mathrm{Fe}(1)$	8017.5(24)	- 2094.9(17)	9837.8(23)	4.8
$\mathrm{Fe}(2)$	2080.0(18)	-2828.4(16)	4964.5(24)	3.7
C(1)	8391(22)	-3017(15)	$1136(18)$	2.5
C(2)	9184(28)	-2999(19)	563(23)	10.9
C(3)	9487(23)	- 2254(25)	$754(26)$	11.8
C(4)	8839(23)	-1618(17)	1392(22)	9.2
C(5)	8178(23)	- 2173(17)	1621(19)	8.4
C(6)	6580(17)	- 2126(11)	8717(17)	5.2
C(7)	7367(16)	- 2494(11)	8097(17)	5.2
C(8)	8029(16)	-1834(16)	8095(18)	6.7
C(9)	7644(17)	- 1064(14)	8723(20)	6.9
C(10)	6771(15)	- 1170(14)	9099(21)	6.8
C(11)	7876(18)	- 4647(21)	248(22)	9.6
C(12)	8252(16)	-4716(18)	9271(25)	7.9
C(13)	8065(17)	-5432(12)	8583(23)	6.8
C(14)	7569 (17)	- 5863(15)	9201(27)	8.6
C(15)	$7419(21)$	-5379(21)	289 (27)	10.5
C(16)	5614(14)	-3417(13)	8511(18)	5.0
C(17)	5088(14)	-3884(14)	9045(17)	5.1
C(18)	5005(15)	-4736(15)	9303(22)	6.2
C(19)	5400(13)	- 4692(13)	7289(19)	5.5
C(20)	5787(14)	-3820(11)	7372(17)	4.2
C(21)	7975(15)	-3870(18)	1232(30)	10.5
C(22)	5680(15)	-2420(12)	8925(19)	5.2
C(23)	3650(13)	- 2814(12)	5535(18)	4.8
C(24)	3498(14)	-3396(12)	4515(20)	5.1
C(25)	3007(15)	-4067(14)	4841(21)	6.3
C(26)	2839(16)	-3842(17)	5992(22)	6.8
C(27)	3242(13)	-3110(13)	6438(19)	5.3
C(28)	1250(11)	-1697(10)	4038(16)	3.6
C(29)	984(15)	- 2540(16)	3476(20)	6.5
C(30)	568(15)	- 2978(12)	4229(21)	5.6
C(31)	602(21)	-2440(21)	5287(22)	6.3
C(32)	1008(13)	- 1641(13)	8511(18)	5.0
C(33)	4024(14)	-1241(14)	6372(17)	4.5
C(34)	3316(15)	- 1013(14)	7138(15)	5.1
C(35)	3391(13)	-208(14)	7696 (18)	6.0
C(36)	4158(18)	-171(16)	$7324(23)$	7.7
C(37)	4588(13)	-514(13)	6502(20)	5.2
C(38)	1946(12)	-243(9)	4132(14)	3.3
C(39)	1443(14)	314(14)	4957(17)	4.9
C(40)	1899(15)	1137(11)	5205(18)	4.8
C(41)	2698(14)	1031(11)	4582(18)	4.8
C(42)	2722(15)	164(14)	3906(17)	5.2
C(43)	4260(14)	-2088(12)	1515(18)	4.8
C(44)	1674(14)	-1105(15)	3442(16)	5.5

${ }^{{ }^{a} B_{\mathrm{eq}}=4 / 3\left(B_{11} a^{2}+B_{22} b^{2}+B_{33} c^{2}+B_{13} a c \cos \beta+B_{12} a b \cos \gamma+B_{23} b c \cos \alpha\right) \text {. } B_{i j} \text { s are defined by exp }\left[-\left(h^{2} B_{11}+k^{2} B_{22}+l^{2} B_{33}+\right.\right.}$ $\left.\left.2 k l B_{23}+2 h l B_{13}+2 h k B_{12}\right)\right]$.
shown in Fig. 4(b). $\mathrm{I}_{3 b}^{-}$is parallel to the b axis and $\mathrm{I}_{3 c}^{-}$ and I_{2} are parallel to the a axis. The I-I distances are found to be $2.830(3)(\mathrm{I}(2)-\mathrm{I}(3)), 3.027(3)(\mathrm{I}(3)-\mathrm{I}(4))$, $2.836(4) \quad(\mathrm{I}(5)-\mathrm{I}(6)), \quad 2.991(4)(\mathrm{I}(6)-\mathrm{I}(7)), \quad 2.932(2)$ $(\mathrm{I}(8)-\mathrm{I}(9)), 2.752(7)\left(\mathrm{I}(10)-\mathrm{I}(10)^{*}\right) \AA$. These values are in accordance with that for the reported I_{3}^{-}ions [13] and I_{2}. The bond angles of I-I-I are found to be 175.2° for $\mathrm{I}_{3 \mathrm{a}}^{-}, 180.0^{\circ}$ for $\mathrm{I}_{3 \mathrm{~b}}^{-}$and 174.6° for $\mathrm{I}_{3 \mathrm{c}}^{-}$. The former two I_{3}^{-} anions are $I_{2}-I^{-}$character, where the $I(4)$ and $I(7)$ atoms carry more negative charge than the other I atoms $(\mathrm{I}(2), \mathrm{I}(3), \mathrm{I}(5)$ and $\mathrm{I}(6))$. The distances of the $\mathrm{I}(1) \cdots \mathrm{I}(3), \mathrm{I}(1) \cdots \mathrm{I}(4)$ and $\mathrm{I}(1) \cdots \mathrm{I}(6)$ are $4.040(3)$,
4.271 (3) and $4.377(2) \AA$ respectively. These are less than or closer to the sum ($4.30 \AA$) of van der Waals radii of two I atoms [8]; i.e. $\mathrm{I}(1)$ is near van der Waals contact to the $\mathrm{I}_{3 \mathrm{a}}^{-}$and $\mathrm{I}_{3 \mathrm{~b}}^{-}$. Avoiding steric hindrance between them, $\mathrm{I}(1)$ may be located close to the $\mathrm{Fe}(1)$ atom. Actually, a much smaller $\mathrm{I}(1)-\mathrm{Ru}(1) \cdots \mathrm{Fe}(1)$ bond angle (81.26°) and $\mathrm{Fe}(1) \cdots \mathrm{I}(1)$ distance (5.036(4) \AA) are observed compared with the corresponding values for $3\left(91.50^{\circ}\right.$ and $\left.5.524(1) \AA\right)$. The $I_{3 \mathrm{a}}^{-}$anion is also near van der Waals contact to the $I_{3 c}^{-}$and I_{2} because the distance $I(4) \cdots I(8)$ and $I(4) \cdots I(10)$ are found to be $4.107(3)$ and $3.573(5) \AA$. All the results show clearly

Table 6
Selected interatomic distances for 2

Atom 1	Atom 2	Distance (A)	Atom 1	Atom 2	Distance (\AA)
I(1)	I(2)	2.909 (2)	I(2)	I(3)	2.895(2)
I(4)	I(5)	$2.909(2)$	I(5)	I(6)	2.944(2)
$\mathrm{Fe}(1)$	$\mathrm{Ru}(1)$	$4.615(3)$	$\mathrm{Fe}(2)$	$\mathrm{Ru}(2)$	4.647(3)
$\mathrm{Fe}(1)$	C(1)	2.08(2)	$\mathrm{Fe}(1)$	C(2)	2.01(3)
$\mathrm{Fe}(1)$	C(3)	2.04(3)	$\mathrm{Fe}(1)$	C(4)	2.06 (3)
$\mathrm{Fe}(1)$	C(5)	2.03(2)	$\mathrm{Fe}(1)$	C(6)	2.12(2)
$\mathrm{Fe}(1)$	C(7)	$2.10(2)$	$\mathrm{Fe}(1)$	C(8)	2.08(2)
$\mathrm{Fe}(1)$	C(9)	$2.07(2)$	$\mathrm{Fe}(1)$	C(10)	2.09 (2)
$\mathrm{Fe}(2)$	C(23)	2.10 (2)	$\mathrm{Fe}(2)$	C(24)	$2.09(2)$
$\mathrm{Fe}(2)$	C(25)	2.09(3)	$\mathrm{Fe}(2)$	C(26)	$2.05(2)$
$\mathrm{Fe}(2)$	C(27)	2.09(2)	$\mathrm{Fe}(2)$	C(28)	2.15 (2)
$\mathrm{Fe}(2)$	C(29)	2.06 (2)	$\mathrm{Fe}(2)$	C(30)	$2.10(2)$
$\mathrm{Fe}(2)$	C(31)	2.07(2)	$\mathrm{Fe}(2)$	C(32)	$2.14(2)$
$\mathrm{Ru}(1)$	C(11)	$2.12(2)$	Ru(1)	C(12)	2.16 (2)
$\mathrm{Ru}(1)$	C(13)	2.16 (2)	$\mathrm{Ru}(1)$	C(14)	2.11 (2)
Ru(1)	C(15)	2.12(3)	Ru(1)	C(16)	2.12(2)
$\mathrm{Ru}(1)$	C(17)	2.21 (2)	$\mathrm{Ru}(1)$	C(18)	2.16(2)
$\mathrm{Ru}(1)$	C(19)	2.17 (2)	$\mathrm{Ru}(1)$	C(20)	2.19(2)
$\mathrm{Ru}(2)$	C(33)	$2.17(2)$	$\mathrm{Ru}(2)$	C(34)	2.18(2)
$\mathrm{Ru}(2)$	C(35)	$2.17(2)$	$\mathrm{Ru}(2)$	C(36)	$2.15(2)$
$\mathrm{Ru}(2)$	C(37)	$2.15(2)$	$\mathrm{Ru}(2)$	C(38)	2.18(2)
Ru(2)	C(39)	2.14 (2)	$\mathrm{Ru}(2)$	$\mathrm{C}(40)$	$2.20(2)$
$\mathrm{Ru}(2)$	C(41)	$2.19(2)$	$\mathrm{Ru}(2)$	C(42)	2.17(2)
C(1)	C(2)	$1.36(5)$	C(1)	C(5)	$1.35(4)$
C(1)	C(21)	1.55 (3)	C(2)	C(3)	$1.24(5)$
C(3)	C(4)	1.44 (5)	C(4)	C(5)	1.44 (4)
C(6)	C(7)	$1.39(3)$	C(6)	C(10)	1.56 (3)
C(7)	C(8)	1.47 (3)	C(8)	C(9)	$1.40(3)$
C(9)	$\mathrm{C}(10)$	$1.35(4)$	C(11)	C(12)	$1.32(4)$
C(11)	C(15)	$1.39(5)$	C(11)	C(21)	$1.55(4)$
C(12)	C(13)	$1.32(3)$	C(13)	C(14)	1.33 (4)
C(14)	C(15)	$1.38(5)$	C(16)	C(17)	$1.34(3)$
C(17)	C(18)	1.51(3)	C(18)	C(19)	$1.38(3)$
C(19)	C(20)	1.53(3)	C(23)	C(24)	1.41(3)
C(23)	C(27)	1.41(3)	C(23)	C(43)	1.49(3)
C(24)	C(25)	1.45 (3)	C(25)	C(26)	$1.38(4)$
$\mathrm{C}(26)$	C(27)	$1.34(3)$	$\mathrm{C}(28)$	$\mathrm{C}(29)$	1.48 (3)
C(28)	C(32)	1.39(3)	C(28)	C(44)	1.43 (3)
C(29)	C(30)	1.38 (3)	C(30)	C(31)	$1.40(3)$
C(31)	C(32)	1.47 (3)	C(33)	C(34)	1.40 (3)
C(33)	C(37)	1.44 (3)	C(33)	C(43)	1.51(3)
C(34)	C(43)	1.51(3)	C(34)	C(35)	$1.34(3)$
C(35)	C(36)	1.43 (4)	C(36)	C(37)	1.46 (3)
C(38)	C(39)	1.39 (3)	C(38)	C(42)	$1.38(2)$
C(38)	C(44)	$1.55(3)$	C(39)	C(40)	$1.50(3)$
C(40)	C(41)	1.38 (3)	C(41)	C(42)	1.48(2)

Fig. 5. Projection of the unit cell of 2 along the a axis.
that $\mathbf{1}$ is formulated as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}-\right.$ $\left.\mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+} \mathrm{I}_{3}^{-} \cdot 0.5\left(\mathrm{I}_{3}^{-}\right)_{2} \cdot 0.5 \mathrm{I}_{2}$.

3.2. Salt 2

The final atomic coordinate and equivalent isotropic temperature factors (B_{eq}) of non-hydrogen atoms, selected interatomic distance, selected bond lengths and angles for 2 are shown in Tables 5, 6 and 2, and a stereo view of the packing as viewed down the c axis is shown in Fig. 5. Two metallocene moieties are inequivalent (unit A, B) in the triclinic unit cell. Although the basic molecular structure of cation $\mathbf{A}(\mathrm{Fe}(1) \mathrm{Ru}(1))$ is similar to that of cation $\mathbf{B}(\mathrm{Fe}(2) \mathrm{Ru}(2))$, the two cations differ only slightly in detail. Mean $\mathrm{Fe}(1)-\mathrm{C}_{\text {ring }}, \mathrm{Ru}(1)-\mathrm{C}_{\text {ring }}$ and $C_{\text {ring }}-C_{\text {ring }}$ distances of cation \mathbf{A} are 2.07(4), $2.15(2), 1.40(6)(\mathrm{FcH}$ moiety) and $1.37(9) \AA(\mathrm{RcH}$ moiety) respectively, which correspond well to the equivalent valucs of cation \mathbf{B} (2.09(4), 2.16(3), 1.41(4) and $1.42(5) \AA$, respectively). The distances from the $\mathrm{Ru}(1)$ and $\mathrm{Fe}(1)$ to the least-squares mean planes (η^{5} $\mathrm{C}_{5} \mathrm{H}_{4}$) are $1.794(2)$ and $1.684(10) \AA$ respectively, and the values of $\mathrm{Ru}(2)$ and $\mathrm{Fe}(2)$ moiety are $1.803(5)$ and $1.711(5) \AA$ respectively.

Although all the lengths ($\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ and $\mathrm{Ru}-\mathrm{Cp}$) of the RcH moiety correspond well to the equivalent values of RcH moiety in the [1.1]ferrocenylruthenocenophane, the values of the FcH moiety are longer than the values of the FcH moiety in the neutral compound (see Table 2) and are closer to those of FcH^{+} [11]. Therefore oxidation states of both Ru and Fe atoms are estimated as $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ respectively, and
the salt 2 is formulated as $\left[\mathrm{Fe}^{\text {III }}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}{ }^{-}\right.$ $\left.\mathrm{Ru}^{\mathrm{II}}\right]^{+} \mathrm{I}_{3}^{-}$considering the results of elemental analysis data. The results of the ${ }^{57} \mathrm{Fe}$-Mössbauer and ${ }^{13} \mathrm{C}$ CP/MAS spectroscopies of 2 support the conclusion; i.e. temperature independent broader typical ferrocenium singlet line (I. S., 0.51 at 78 K and $0.32 \mathrm{~mm} \mathrm{~s}^{-1}$ at 300 K) and no ${ }^{13} \mathrm{C}$-NMR signals were observed.

The two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ planes of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Ru}^{\text {II }}$ moieties are nearly parallel (the dihedral angle between them is less than 5.8°, as shown in Table 2). Although the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings of each FcH and RcH moiety of 1 are essentially eclipsed, those of 2 are staggered; i.e. the

Fig. 6. ORTEP drawing (upper views) of cation 2 (cation A).

Fig. 7. ortep drawing (side views) of cation 2 (cation \mathbf{A}).
rotation angles of the rings are $23.8^{\circ}\left(\mathrm{Fe}^{\mathrm{III}}\right)$ and 31.0° ($\mathrm{Ru}^{\mathrm{II}}$) for cation \mathbf{A} and 28.8° and 29.0° respectively for cation B, see Fig. 6.

There are two types of I_{3}^{-}anion ($\mathrm{I}(1)-\mathrm{I}(2)-\mathrm{I}(3) ; \mathrm{I}_{3 \mathrm{a}}^{-}$ and $\left.\mathrm{I}(4)-\mathrm{I}(5)-\mathrm{I}(6) ; \mathrm{I}_{3 \mathrm{~b}}^{-}\right)$. The $\mathrm{I}-\mathrm{I}$ distances are found to be $2.909(2)(\mathrm{I}(1)-\mathrm{I}(2)), 2.895(2)(\mathrm{I}(2)-\mathrm{I}(3)), 2.909(2)$ $(\mathrm{I}(4)-\mathrm{I}(5)), 2.944(2)(\mathrm{I}(5)-\mathrm{I}(6)) \AA$ and the bond angles of $\mathrm{I}-\mathrm{I}-\mathrm{I}$ are found to be $177.1(1)$ for $\mathrm{I}_{3 \mathrm{a}}^{-}, 178.3(1)^{\circ}$ for $\mathrm{I}_{3 \mathrm{~b}}^{-}$. The shortest intermolecular $\mathrm{I} \cdots \mathrm{I}$ distance is $3.779(3) \AA(\mathrm{I}(3) \cdots \mathrm{I}(4))$, which is much shorter than the sum ($4.30 \AA$) of the van der Waals radii of I. Therefore the I_{3}^{-}sit at van der Waals contact to each other. The distances of $\mathrm{I}(1) \cdots \mathrm{C}(11), \mathrm{I}(1) \cdots \mathrm{C}(21)$, $\mathrm{I}(2) \cdots \mathrm{C}(7)$ and $\mathrm{I}(6) \cdots \mathrm{C}(32)$ are found to be $3.85(2)$, $3.77(3), 3.81(2)$ and $3.86(2) \AA$ respectively. These values are less than or closer to the value $(3.85 \AA)$ of the sum of the van der Waals radii of I and C. Therefore the
I_{3}^{-}sits at van der Waals contact to the cation, as shown in Fig. 5. Thus the large twisted structure of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}$ system should be caused by the repulsion between them. Actually, large twisted angles between the planes $C(1 \sim 5)-C(11 \sim 15), C(6 \sim 10)$ $C(16 \sim 20)$ are observed at 30.38 and 32.55° respectively, for cation A (see Fig. 7) and at 30.11 and 32.09° for cation B. These values are much larger than the values for the neutral compound (17.6 and 16.7°) and $\mathbf{1}$ (12.24 and 25.87°). The largely twisted structure of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}$ system (see Fig. 7) gives a staggered conformation of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ planes (described formerly, see Fig. 6) and much shorter $\mathrm{Fe} \cdots \mathrm{Ru}$ distances (4.615(3) \AA for cation \mathbf{A} and $4.647(3) \AA$ for cation B) compared with the value of the original compound (4.792(2) Å).

4. Conclusions

From the results obtained in the present study, it has been found that the oxidation of [1.1]ferrocenylruthenocenophane with 1.5 equivalent of I_{2} gives a monocationic salt 2 formulated as $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{II}}\right]^{+} \mathrm{I}_{3}^{-}$and an excess of I_{2} gives a dicationic salt 1 fommatated as [$\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\text {IV }} \mathrm{I}$] . $\mathrm{I}_{3}^{-} \cdot 0.5\left(\mathrm{I}_{3}^{-}\right)_{2} \cdot 0.5 \mathrm{I}_{2}$ with the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}$. The result is in accordance with that from cyclic voltammograms. However, the oxidation of [1.1]ferrocenylruthenocenophane with an equivalent amount of $[\mathrm{RcHI}]^{+} \mathrm{BF}_{4}^{-}$gives a monocationic salt $\mathbf{3}$ formulated as $\left[\mathrm{Fe}^{\mathrm{Il}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5}\right.\right.$ -

Scheme 1.

Scheme 2.
$\left.\left.\mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+} \mathrm{BF}_{4}^{-}$, not a monocationic $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}^{-}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}^{\mathrm{II}}\right]^{+} \mathrm{BF}_{4}^{-}$ferrocenium salt, as shown in Scheme 1.

Recently, the present authors, Taube and coworkers and Kirchner and coworkers have reported several studies on two-electron ($2 \mathrm{e}^{-}$) exchange reaction between the $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Ru}^{\mathrm{IV}}$ atoms in some mixed-valence halobiruthenocenium $(I I, I V)^{+} \mathrm{Y}^{-},\left([\operatorname{RcRcX}]^{+} \mathrm{Y}^{-}: X=\mathrm{Cl}\right.$, Br, I and $\mathrm{Y}=\mathrm{I}_{3}, \mathrm{PF}_{6}, \mathrm{BF}_{4}$) and mononuclear mixed systems of $\mathrm{RcH} / \mathrm{RcHX}{ }^{+}$and $\mathrm{OcH} / \mathrm{OcHX}{ }^{+}$by means of ${ }^{1} \mathrm{II}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopies [14-24]. All the results indicate that the migration of halogen atoms between the $\mathrm{Ru}^{I I}$ in ruthenocene and the $\mathrm{Ru}^{\mathrm{IV}}$ in haloruthenocenium is inevitable for the $2 \mathrm{e}^{-}$-exchange reaction. Considering these facts, the $2 e^{-}$transfer to the $\mathrm{Ru}^{\mathrm{IV}}$ atom in $[\mathrm{RcHI}]^{+}$cation from the $\mathrm{Ru}^{\mathrm{II}}$ atom in the [1.1]ferrocenylruthenocenophane is through a stable intermediate $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}^{-} \cdots \mathrm{Ru}^{\mathrm{II}}$ bridge, as shown in Scheme 2 (the stability of the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{X}^{-}$bond increases in the order $\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$). This $2 \mathrm{e}^{-}$transfer mechanism with $[\mathrm{RcHI}]^{+}$gives $\mathbf{3}$ not a monocationic ferrocenium cation 2. Without such oxidation mechanisms with iodine, only $\mathrm{Fe}^{\mathrm{II}}$ in [1.1]ferrocenylruthenocenophane is oxidized selectively with iodine giving a monocationic
typical ferrocenium salt 2 . $\mathrm{Ru}^{\mathrm{II}}$ in 2 was oxidized continuously with an excess of iodine giving a dicationic salt $\mathbf{1}$ with the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}^{-}$bond. Actually, several attempts to prepare salt $\mathbf{3}$ using iodine only in various molar rations (neutral compound $/ I_{2}=$ around $1 / 2-$ $1 / 4$) gave mixtures of $\mathbf{1}$ and 2.

References

[1] M. Watanabe, I. Motoyama, T. Takayama, M. Shimoi and H. Sano J. Organomet. Chem., 496 (1995) 87.
[2] U.T. Mueller-Westehoff, A.L. Rheingold and G.F. Swiegers, Angew. Chem.. Int. Ed. Engl., 3 I (1992) 1353.
[3] A.L. Rheingold, U.T. Muller-Westerhoff, G.F. Swiegers and T.J. Haas, Organometallics, 11 (1992) 3411.
[4] M. Watanabe and H. Sano, Bull. Chem. Soc. Jpn., 63 (1990) 777.
[5] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, UK, 1974, Table 2.2 A; J.A. Ibers and W.C. Hamilton, Acta Crystallogr., 17 (1964) 781.
[6] D.C. Creagh, W.J. McAuley, International Tables for X-ray Crystallography, Vol. C, Kluwer Academic, Boston, 1992, Table 4.2.6.8, pp. 219-222.
[7] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corp., 1985.
[8] L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, 1960.
[9] Y.S. Sone, A.W. Schlueter, D.N. Hendrickson and H.B. Gray, Inorg. Chem., 13 (1974) 301.
[10] J.D. Dunitz, L.E. Orgel and A. Rich, Acta Crystallogr., 9 (1956) 373.
[11] G.L. Hardrove and D.H. Templetom, Acta Crystallogr., 12 (1959) 28.
[12] N.J. Mammano, A. Zalkin, A. Landers and A.L. Rheingold, Inorg. Chem., 16 (1977) 297.
[13] M. Watanabe, I. Motoyama, M. Shimoi and T. Iwamoto, Inorg. Chem., 33 (1994) 2518.
[14] M. Konno and H. Sano, Bull. Chem. Soc. Jpn., 61 (1988) 1455; M.H. Delville, F. Robert, P. Gouzerh, J. Linares, K. Boukheddaden, F. Varret and D. Astruc, J. Organomet. Chem., 45I (1993) C10; T.-Y. Dong, D.N. Hendrickson, K. Iwai, M.J. Cohn, S.J. Geib, A.L. Reingold, H. Sano, I. Motoyama and S. Nakasima, 107 (1985) 7996.
[15] M. Watanabe, T. Iwamoto, H. Sano and I. Motoyama, J. Organomet. Chem., 446 (1993) 177.
[16] M. Watanabe, T. Iwamoto, A. Kuboi, S. Kawata, H. Sano and I. Motoyama, Inorg. Chem., 31 (1992) 177.
[17] M. Watanabe, T. Iwamoto, H. Sano and I. Motoyama, Inorg. Chem., 32 (1993) 5223.
[18] M. Watanabe, T. Iwamoto, H. Sano and I. Motoyama, J. Organomet. Chem., 442 (1992) 309.
[19] M. Watanabe, 1. Motoyama and H. Sano, Inorg. Chim. Acta, 225 (1994) 103.
[20] T.P. Smith, D.J. Iverson, M.W. Droge, K.S. Kwan and H. Taube, Inorg. Chem., 26 (1987) 2882.
[21] K. Kirchner, L.F. Han, H.W. Dodgen, S. Wherland and J.P. Hund, Inorg. Chem., 29 (1990) 4556.
[22] K. Kirchner, H.W. Dodgen, S. Wherland and J.P. Hund, Inorg. Chem., 28 (1989) 604.
[23] K. Kirchner, H.W. Dodgen, S. Wherland and J.P. Hund, Inorg. Chem., 29 (1990) 2301.
[24] K. Kirchner, S.Q. Dang, M. Stebler, H.W. Dodgen, S. Wherland and J.P. Hund, Inorg. Chem., 28 (1989) 3605.

[^0]: ${ }^{*}$ Corresponding author.

[^1]: ${ }^{57} \mathrm{Fe}$-Mössbauer measurements were carried out using a ${ }^{57} \mathrm{Co}(\mathrm{Rh})$ source moving in a constant acceleration mode. The isomer shift values were referred to metallic iron foil. The Mössbauer parameters were obtained by least-squares fitting to Lorentzian peaks. The experimental error of the isomer shifts and quadrupole splitting values was $\pm 0.02 \mathrm{~mm} \mathrm{~s}^{-1}$. The ${ }^{13} \mathrm{C} C P / \mathrm{MAS}$

[^2]: ${ }^{\mathrm{a}} \mathrm{Fe}-\mathrm{Cp}$; the distance between the Fe and $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings.
 ${ }^{\mathrm{b}} \mathrm{Ru}-\mathrm{Cp}$; the distance between the Ru and $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings.

